Date	Fall 2018-2019	Credits	3
Course Title	Mathematics III	Course Number	MATH 215
Pre-requisite (s)	MATH113	Co-requisite (s)	None
Hours	60	Out of Class Work Hours	120

Place and Time of Class Meeting

Name and Contact Information of Instructor

Book required

(The School recognizes the use of the textbook in the classroom as part of the educational methodology and strategy applied in diverse materials. The textbook is part of the curriculum and is used to reach the student in an effective manner in the classroom. Every student is expected to acquire and use the textbook.)

Linear Algebra and Its Applications, 5th Edition David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Limited

Classroom expectations for students

Attendance Policy

Students are liable to attend every course, practical and laboratory work of the program they are enrolled and to take the exams and participate in academic work required for achieving the course. Student attendance to all courses is compulsory. Students who do not attend a minimum 70% of the theoretical courses and 80% of the practical courses will be considered as absent for the related courses. Students who do not meet the mandatory minimum requirement of attendance will fail the course. Students who fail a course for not fulfilling minimum attendance requirement are obliged to meet the attendance requirement when they re-take the course.

Student Tardiness Policy

Students are permitted to arrive to the class in the first 15 minutes after the scheduled start of the course; extension of tardiness time is in instructor's discretion.

Course Description (must correspond exactly to Catalog description)

This course will investigate systems of linear equations and their solutions, the operations of the matrix and vector algebra, evaluations of the determinants and inverse matrix, properties of determinants, Cramer's Rule, vector spaces, subspaces, linear independence, basis, row space, column space, null space, rank, linear transformations, eigenvalues and eigenvectors, diagonalization, inner product spaces, orthogonality, Gram-Schmidt process, least squares, orthogonal diagonalization and singular value decomposition.

Learning Objectives

At the end of this course the student will be able to:

- Solve systems of linear equations
- Determine the inverse of a matrix
- Calculate the determinant of a matrix.
- Determine the linear independence of a vector set and solve the problems about linear transformations and inner product spaces.
- Determine the eigenvalues and eigenvectors and diagonalize a matrix.
- Orthogonalize a vector set by using Gram-Schmidt Method and apply Singular Value Decomposition.

Topical Outline and Schedule

DATE

WEEK 1

SPECIFIC	• Describe the course.
OBJECTIVES	• Explain the areas the linear algebra is needed.
	• Write an example about linear equations.
	• Identify the relationship between a linear equation and its solution.
	 Show some examples about the systems which have same solution set.
	 Define row echelon, reduced row echelon and leading term
	Compare row eshelon and reduced row eshelon form
	Compare now echeron and reduced now echeron form.
	• Reduce some systems into row echelon form/ reduced row echelon
	form.
	• Define the general solution of a linear system.
	• Explain the differences between consistent and inconsistent system
	• Explain the trivial solution.
TODIC	
TOPIC (S)	• Syllabus.
	• Systems of linear equations.
	Elementary row operations.
	Gauss-Jordan Elimination.
LEARNING	Discussion of Syllabus.
ACTIVITIES	Discuss solution types of the linear equations.
	Solve two systems which have same solution set.
	Discussion of the solution types of a system of the linear equations.
	Evaluate the relation between unknown number and the free variables by
	discussing.
	Completion of exercises and problems.
OUT OF	Review the Syllabus.
CLASS	Read sections 1.1, 1.2, 1.3, 1.4, 1.5, 1.6
WURK	Read sections 2.1, 2.2, 2.3 and be prepared to discuss in class.
ASSIGNMEN T	
L DATE	WEEK 2
	Define the matrix entries in a matrix main diagonal dimension of a
ORIECTIVES	Define the matrix, entries in a matrices
ODJECTIVES	Show how to name a matrix and its ontries
	 Show now to name a matrix and its entries. Determine the dimension of a matrix.
	Determine the dimension of a matrix.
	• Compare two matrices to decide equality.
	• Define matrix operations: addition, subtraction, multiplication by a
	scalar, and multiplication.
	Calculate the sum and difference of two matrices.
	Find a scalar multiple of a matrix
	Determining whether a product is defined
	Define linear combination of r matrices.
	• Writing a system of m equations with n unknowns as a single matrix
	equation.

	Define transpose and trace of a matrix.
	• Explain the properties of matrix arithmetic by giving an example.
	• Define zero matrix.
	Define inverse matrix.
	• Explain properties of the inverse matrices.
	Define elementary matrices.
	• Solve a system by matrix inversion.
TOPIC (S)	Matrices and matrix operations.
	• Definition of the inverse matrix.
	• Algebraic properties of a matrix.
	• Elementary matrices.
	 Calculating the inverse of a matrix.
LEARNING	Finding unknown terms by comparing two equal matrices.
ACTIVITIES	Discussion of the existence of the product of the two matrices.
	Finding a suitable way to denote the systems of the linear equations.
	Group discussion: how to illustrate a system of equations by using matrices.
	Support the students to make inferences about existence of the properties of
	the matrix arithmetic and prove them step by step.
	Encourage the students to show a new way to finding the solution sets of the
	systems.
	Discuss the conditions to solve a system with matrix inversion.
	Completion of exercises and problems.
OUT OF	Read sections 2.1, 2.2, and 2.3
CLASS WORK	Read sections 2.6, and be prepared to discuss in the class.
WUKK	
T	
DATE	WEEK 3
SPECIFIC	• Explain the relation between consistency and invertibility.
OBJECTIVES	 Define diagonal, triangular, and symmetric matrices.
	 Solve some examples about network analysis, design of traffic
	patterns, and chemical reactions.
TOPIC (S)	Inverse Matrices
(-)	• Diagonal, triangular, and symmetric matrices.
	 Applications of linear systems.
LEARNING	Discussion of the connection between consistency and invertibility.
ACTIVITIES	Formulate the power of a diagonal matrix by discussion.
	Discuss some brief applications of linear systems.
	Modelling problem by discussion.
	Completion of exercises and problems.
OUT OF	Homework: Read Chapter 2
CLASS	MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition;
WORK	David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Ltd.)
ASSIGNMEN	

DATE	WEEK 4	
SPECIFIC	Define minor and cofactor of an entry	
OBJECTIVES	Define determinant.	
	• Explain properties of the determinant.	
TOPIC (S)	Determinants by cofactor expansion.	
	Evaluating determinant by row reduction.	
LEARNING	Discuss how to choose a row or a column to solve by using easiest way.	
ACTIVITIES	Discuss how to use properties of the determinants to obtain determinant of a	
	matrix.	
	mpletion of exercises and problems.	
OUT OF	Homework: Read Chapter 3	
CLASS	MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition;	
WORK	Doing Homework I II	
ASSIGNMEN		
SPECIFIC	• Use row/column reduction to calculate the determinant of a matrix	
OBJECTIVES	 Define adjoint matrix 	
ODJECTIVES	 Define aujoint matrix. Using adjoint matrix to find the inverse. 	
	 Using Gramer's Bule to solve a system 	
	• Using Cramer's Rule to solve a system.	
TOPIC (S)	Evaluating determinant by row reduction.	
	Properties of the determinant	
	Adjoint Matrix.	
	• Cramer's Rule	
LEARNING	Completion of exercises and problems.	
ACTIVITIES		
OUT OF	Homework: Read Chapter 3	
CLASS	MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition;	
WORK	David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Ltd.)	
ASSIGNMEN	Doing Homework II	
T		
DATE	WEEK 6	
SPECIFIC	• Overview of the vectors in two dimensional space and related	
OBJECTIVES	definitions	
	• Define Norm, dot product, and distance.	
	• Explain the importance of the unit vector and normalization.	
	Define dot product.	
	• Explain the properties of the dot product.	
	Define orthogonal and orthonormal set.	
	Illustrate the orthogonal projection of a vector on a plane.	
	• Define the vectors and vector spaces in general.	
	Give some examples	
	 Explain subspace, its properties and related thoerems 	

	Define linear combinations of the vectors and span.	
	Define the linearly independent set.	
	• Explain how to determine the linearly independency of a set.	
	• Define Wronskian determinant and the relationship between Wronkian	
	determinant and the linearly dependeny.	
TOPIC (S)	Overview of the sections 4.1, 4.2, and 4.3	
	Real vector spaces	
	Subspaces	
	Linear Independence	
LEARNING	Discuss the number of the unit vectors.	
ACTIVITIES	Illustrate the relation between norm and distance.	
	Obtain the formula of the orthogonal projection of a vector on a plane step by	
	step by discussion.	
	Show that every vector can be denoted by the linear combinations of some	
	special vectors.	
	Discuss the minimum number of the vectors in S span the same space.	
	Completion of exercises and problems.	
OUT OF	NVI ab (This course is based on Linear Algebra and its Applications, 5th Edition:	
ULASS WORK	David C Lay Stephan B Lay Judi L McDonald Pearson Education Ltd.)	
WUKK	Doing Homework II, III	
T		
	WEPE 7	
SPECIFIC	Define basis_standard basis	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and pull space and related theorems. 	
TOPIC (S)	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. 	
SPECIFIC OBJECTIVES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. Coordinates and Basis Dimension Change of Basis Row Space, Column Space, and Null Space	
SPECIFIC OBJECTIVES TOPIC (S)	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. Coordinates and Basis Dimension Change of Basis Row Space, Column Space, and Null Space Represent a vector by using different bases. 	
SPECIFIC OBJECTIVES TOPIC (S)	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. Coordinates and Basis Dimension Change of Basis Row Space, Column Space, and Null Space Represent a vector by using different bases. Do the same operation by using different bases. 	
SPECIFIC OBJECTIVES TOPIC (S)	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. Coordinates and Basis Dimension Change of Basis Row Space, Column Space, and Null Space Represent a vector by using different bases. Do the same operation by using different bases. Discuss whether changing the basis can be more effective. 	
TOPIC (S)	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. Coordinates and Basis Dimension Change of Basis Row Space, Column Space, and Null Space Represent a vector by using different bases. Do the same operation by using different bases. Discuss whether changing the basis can be more effective. Completion of exercises and problems. 	
SPECIFIC OBJECTIVES TOPIC (S) LEARNING ACTIVITIES	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. Coordinates and Basis Dimension Change of Basis Row Space, Column Space, and Null Space Represent a vector by using different bases. Do the same operation by using different bases. Discuss whether changing the basis can be more effective. Completion of exercises and problems. 	
SPECIFIC OBJECTIVES TOPIC (S) LEARNING ACTIVITIES OUT OF CLASS	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain how to change of basis Explain row space, column space and null space and related theorems. Coordinates and Basis Dimension Change of Basis Row Space, Column Space, and Null Space Represent a vector by using different bases. Do the same operation by using different bases. Discuss whether changing the basis can be more effective. Completion of exercises and problems. Homework: Read Chapter 4 and be prepared to discuss in class. MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition; 	
DATE SPECIFIC OBJECTIVES TOPIC (S) LEARNING ACTIVITIES OUT OF CLASS WORK	 Define basis, standard basis Show that a space can be spanned by several bases. Define coordinate vector of a vector relative to a basis set. Explain all bases for a finite dimensional vector space have the same number of vector. Define dimension of a vector space. Calculate the dimension of the solution set of a linear equation system. Explain coordinate mapping. Explain now space, column space and null space and related theorems. Coordinates and Basis Dimension Change of Basis Row Space, Column Space, and Null Space Represent a vector by using different bases. Do the same operation by using different bases. Discuss whether changing the basis can be more effective. Completion of exercises and problems. Homework: Read Chapter 4 and be prepared to discuss in class. MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition; David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Ltd.) 	

Т		
DATE	WEEK 8	
SPECIFIC	First Midterm Exam	
OBJECTIVES	• Define rank and nullity.	
	• Explain linear operator and related theorems.	
	• Define kernel and range.	
	• Explain the topics by examples.	
	Explain one-to-one, onto, isomorphism and related theorems.	
TOPIC (S)	Rank, Nullity, and the Fundamental Matrix Spaces	
	General Linear Transformations	
	Isomorphism	
LEARNING	Discuss the relationship between operators and functions.	
ACTIVITIES	Discuss the similarities between column space and range, null space and	
	kernel.	
	Solve examples about related topics.	
	Completion of exercises and problems.	
OUT OF	MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition;	
CLASS	David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Ltd.)	
WORK		
ASSIGNMEN		
T		
DATE	WEEK 9	
SPECIFIC		
UBJECTIVES		
$\frac{10PIC}{10PIC}$		
LEAKNING		
CLASS		
WORK		
ASSIGNMEN		
Т		
DATE	WEEK 10	
SPECIFIC	• Explain the matrix representation of a linear transformation.	
OBJECTIVES	• Explain similar matrices and their properties.	
	• Calculate determinant of a linear operator.	
	• Obtain the eigenvalues and bases for the eigenspaces of a linear	
	operator.	
TOPIC (S)	Matrices for General Linear Transformations	
10110 (0)	Similarity	
LEARNING	Completion of exercises and problems.	
ACTIVITIES		
OUT OF	Homework: Read Chapter 5	
CLASS	MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition;	
WORK	David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Ltd.)	
	Doing Homework IV	

ASSIGNMEN		
L DATE	WEEK 11	
SPECIFIC	 Define eigenvalue of a matrix and corresponding eigenvectors. 	
OBJECTIVES	 Explain how to find eigensystem of a matrix 	
	 Explain new to find eigensystem of a matrix. Explain similarity transformation and related theorems 	
	 Overview of the complex numbers 	
	Obtaining complex eigensystem	
TODIC (S)	Figenvalues and Figenvectors	
10110 (5)	Diagonalization	
	Complex Vector Spaces	
IFARNING	Discuss how to find a way to obtain the eigenvalues of a triangular matrix	
ACTIVITIES	easily	
nenviillo	Discussion of the relations between the eigensystems of the A and powers of	
	A.	
	Completion of exercises and problems.	
OUT OF	Homework: Read sections 7.1, and 7.2, and be prepared to discuss in class.	
CLASS	MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition;	
WORK	David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Ltd.)	
ASSIGNMEN	Doing Homework IV	
Т		
DATE	WEEK 12	
SPECIFIC	MIDTERM EXAM II	
OBJECTIVES	 Define the inner product, length and orthogonality 	
	 Explain orthogonal matrices and related theorems. 	
	• Explain the orthogonally diagonalization.	
	Define Hermitian matrix, unitary matrix.	
	Explain the unitarily diagonalization.	
TOPIC (S)	Inner Product	
	Orthogonal Matrices	
	Orthogonal Diagonalization	
	Hermitian, Unitary, and Normal Matrices	
LEARNING	Diagonalize a symmetric matrix to point P is a orthogonal matrix.	
ACTIVITIES	Discuss the benefits of the orthogonal diagonalization.	
	Completion of everyices and problems	
	Homework: Read sections 6.1, 6.2, 6.3, 6.4 and 6.7 and be prepared to	
CLASS	discuss in class.	
WORK	MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition;	
ASSIGNMEN	David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Ltd.)	
Т	Doing Homework V	
DATE	WEEK 13	
SPECIFIC	• Show that how to two vectors are orthogonal.	
OBJECTIVES	• Define orthogonal complement.	

	Explain Gram-Schmidt Process		
	 Define inner product spaces and explain related thoerems 		
TOPIC (S)	Orthogonality		
	Gram-Schmidt Process		
	Inner product spaces		
LEARNING	Illustrate that a vector equals to sum of the orthogonal projection on a		
ACTIVITIES	subspace of the vector space and its complement.		
	Discussion of obtaining a approximation by using least squares.		
	Completion of exercises and problems.		
OUT OF	Homework: Read section 7.4 and be prepared to discuss in class		
CLASS	MyLab (This course is based on Linear Algebra and Its Applications, 5th Edition;		
WORK	David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Ltd.)		
ASSIGNMEN			
T			
DATE	WEEK 14		
SPECIFIC	• Define singular values of a matrix.		
OBJECTIVES	• Explain how to obtain the singular value decomposition of a matrix.		
TOPIC (S)	Singular Value Decomposition		
	General review.		
LEARNING	Discuss whether A ⁺ A and AA ⁺ have the same nonzero eigenvalues.		
ACTIVITIES	Completion of exercises and problems.		
OUT OF	Homework: Read Chapter 7.		
CLASS	NyLab (This course is based on Linear Algebra and its Applications, 5th Edition;		
WORK	Doing Homework V		
ASSIGNMEN			
	WEEK 15		
	WEEK 15		
ORIECTIVES	• Filidi Exdili.		
I FADNING			
ACTIVITIES			
OUT OF	MyMathLab (This course is based on Linear Algebra and Its Applications, 5th		
CLASS	Edition; David C. Lay, Stephan R. Lay, Judi J. McDonald Pearson Education Ltd.)		
WORK	Doing Homework V .		
ASSIGNMEN			
Т			

Instructional Methods

In developing methodological strategies, it is best to discuss them between teachers and students in an environment of freedom and mutual agreement in order to ensure that the students make them their own and take responsibility for their execution and for attaining the goals of this course.

The following strategies may be used in this class:

- 1. A review of the literature.
- 2. Analysis of assigned readings.
- 3. Individual and group discussions.
- 4. Preparation of a didactic plan.
- 5. Preparation of lecture notes.

Instructional Materials and References

Linear Algebra with Applications Authors: W. Keith Nicholson Publisher: McGraw-Hill; 6th edition ISBN-13: 978-0070985100 | ISBN-10: 0070985100

Linear Algebra and Its Application Authors: David Lay Publisher: Pearson; 4th edition ISBN-13: 978-0078111006 | ISBN-10: 0078111005

Assessment Criteria and Methods of Evaluating Students

Grade	Coefficient
AA	4.00
ВА	3.50
BB	3.00
СВ	2.50
CC	2.00
DC	1.50

DD	1.00
FF	0.00
VF	0.00

Ι	Distribution of Grade Elements		
	In-Term Studies	Quantity	Percentage
	Midterm I	1	20
	Midterm II	1	20
	Homework	5	20
	Total	7	60
	End-Term Studies	Quantity	Percentage
	End-Term Studies	Quantity 1	Percentage 40
	End-Term Studies Final Total	Quantity 1 1	Percentage4040
	End-Term Studies Final Total Contribution Of In-Term Studies To Overall Grade	Quantity 1 1	Percentage 40 40 60
	End-Term Studies Final Total Contribution Of In-Term Studies To Overall Grade End-Term Studies	Quantity 1 1	Percentage 40 40 60 40

Date Syllabus Was Last Reviewed: <u>September 13, 2018</u>